BIOSYNTHESIS OF DAPHNILACTONE-B

Haruki Niwa and Yoshimasa Hirata

(Chemical Institute, Nagoya University, Chikusa-ku, Nagoya, Japan)

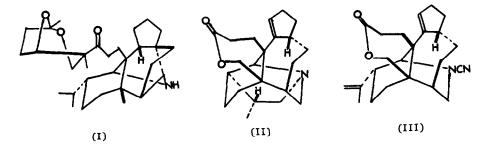
Kazuo T Suzuki

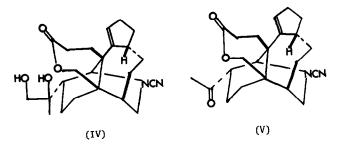
(Stanford Research Institute, Menlo Park, California 94025, U.S.A)

and Shosuke Yamamura*

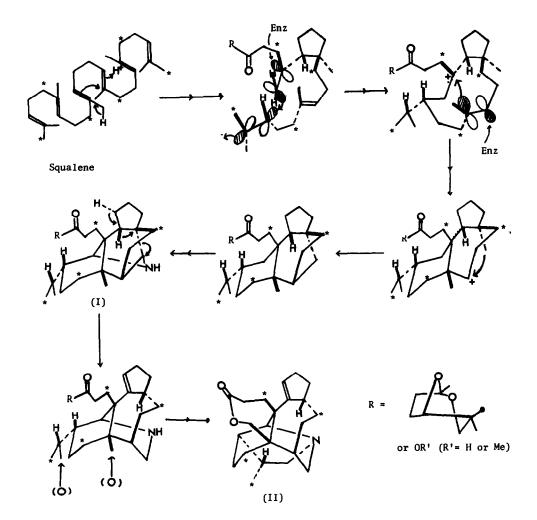
(Faculty of Pharmacy, Meijo University, Showa-ku, Nagoya, Japan)

(Received in Japan 9 April 1973; received in UK for publication 30 April 1973)


As reported in the previous paper,¹ daphniphylline, one of the major Daphniphyllum alkaloids, has been biosynthesized from six molecules of mevalonic acid (MVA) through a squalene-like intermediate, and the highest incorporation of DL- $[2-^{14}C]$ MVA into daphniphylline has also been recorded in June and July (total incorporation, 0 14%) However, DL- $[2-^{14}C]$ MVA has not been incorporated into yuzurimine-type alkaloids, the carbon skeleton of which consists of twenty-two carbon atoms. From a biogenetic point of view, many C_{22} -alkaloids represented by yuzurimine², methyl homodaphniphyllate³, methyl homosecodaphniphyllate⁴ and daphnilactone-B⁵ could not originate from four MVA molecules and an acetate,⁶ but must be derived from such a precursor as secodaphniphylline (I) or codaphniphylline by oxidative cleavage with loss of eight carbon atoms. In the present paper, the biosynthesis of daphnilactone-B (II), a main alkaloid of the fruits of Daphniphyllum teijsmanni Zollinger,⁵ is described


According to essentially the same procedure as reported in the previous paper,¹ the feeding experiments were carried out using a fresh spray of <u>Daphniphyllum teijsmanni</u> Zollinger with unripe fruits (ca 120 grains, ca. 56g)⁷, to which DL-[2-¹⁴C]MVA (100 μ Cl) was fed at room temperature for 14 days The alkaloidal components were extracted, and then carefully separated by preparative tlc [Kieselgel GF₂₅₄ nach Stahl in <u>n</u>-hexane- Et₂O-Et₂NH (20 20 1)] to give a radioactive fraction corresponding to daphnilactone-B (II),⁵ which was diluted with unlabelled daphnilactone-B (200mg) Recrystallization from benzene-

^{*} To whom inquires should be addressed.


<u>n</u>-hexane afforded the pure daphnilactone-B with constant specific activity (4 27 x 10^4 dpm/mM) (total incorporation, 2.46 x 10^4 dpm, 0.01%) Degradation studies on the labelled daphnilactone-B revealed that four ¹⁴C atoms were included in II, and one-fourth of the. total radioactivity was located at the secondary methyl group, which was demonstrated by the following procedure Von Braun degradation of daphnilactone-B followed by dehydro-bromination with Ag - pyridine gave the known olefin (III), ⁵ which was oxidized with OsO₄ in pyridine - THF (room temp, overnight) to afford the corresponding glycol (IV)⁸ whose specific activity was 4.27 x 10^4 dpm/mM. Further oxidation with NaIO₄ in aq. dioxane

(room temp., overnight) gave a keto-cyanamide (V)⁹ (specific activity, 4.20 x 10^4 dpm/mM) and non-radioactive formaldehyde which was trapped by aq. solution of dimedone. Finally, the iodoform reaction of V afforded yellow needles of CHCI₃ (specific activity, 1.09 x 10^4 dpm/mM).

On the basis of the stereostructures of secodaphniphylline $(I)^{10}$ and daphnilactone-B $(II)^{11}$ coupled with the biogenetic consideration of the amine molety in I^1 , a plausible biosynthetic route to daphnilactone-B from a squalene-like intermediate can be demonstrated as follows.

The authors wish to thank Professor Reiji Okazaki and Mr. Akio Sugino (Institute of Molecular Biology, Nagoya University) for scintillation measurements.

REFERENCES AND FOOTNOTE

- K T Suzuki, S Okuda, H Niwa, M Toda, Y Hirata and S Yamamura, <u>Tetrahedron</u> Letters, 799 (1973)
- 2 H Sakurai, N Sakabe and Y Hirata, <u>ibid</u>, 6309 (1966), H Irikawa, S Yamamura and Y Hirata, <u>Tetrahedron</u>, <u>28</u>, 3727 (1972)
- 3. M Toda, S Yamamura and Y. Hırata, Tetrahedron Letters, 2585 (1969)

- 4. M. Toda, Y Hirata and S Yamamura, Tetrahedron, 28, 1477 (1972).
- 5. H Niwa, M. Toda, Y. Hirata and S Yamamura, Tetrahedron Letters, 2697 (1972)
- 6 O. E. Edwards in "The Alkaloids Vol. 1", The Chemical Society, London, <u>1971</u>, p. 375, and references cited therein
- 7. Collected at Irako Cape (Aichi-ken, Japan) in the end of september
- 8. A colourless liquid (IV) C₂₃H₃₂O₄N₂ (m/e 400 2340), V_{max}(film) 3360, 2190 and 1725cm⁻¹;
 6 (CDCl₃) 1.28(3H, s), 3.03(1H, d, J= 14 0Hz), 3.50(2H, br s), 3.65(1H, d, J= 13.0Hz), 3.70(1H, brs), 4.14(1H, q, J= 14 0, 7.5Hz), 4 83(1H, d, J= 13.0Hz) and 5.83ppm (1H, br.s)
- 9. The ketocyanamide (V) \cdot m.p. 245 5-246°, $C_{22}H_{28}O_3N_2$, m/e 368(M⁺) and 325, \mathcal{Y}_{max} (KBr) 2190, 1730 and 1720cm⁻¹; $\mathcal{S}(CDC1_3)$ 2.32(3H, s), 3 01(1H, d, J= 14 0Hz), 3.69(1H, d, J= 13.0Hz), 3.75(1H, d, J= 3.0Hz), 4 08(1H, q, J= 14.0, 7 5Hz), 4.80(1H, d, J= 13.0Hz) and 5.90ppm (1H, br s)
- 10. K. Sasakı and Y. Hırata, J Chem Soc (B), 1565 (1971).
- 11. K. Sasakı and Y. Hırata, Tetrahedron Letters, 1891 (1972).